
a Fermi National Accelerator Laboratory 

FERMILAB-CONF-86/140-T 
October, 1986 

SYMMETRY IN PHYSICS 

CHRISTOPHER T. HILL 
Fermi National Accelerator Laboratory 
P. 0. Bcx 500, Batavia, Illinois 60510 

Presented at the Conference on the Teaching of Modern Physics, held at 
Fermilab, April, 1986. 

e Operaled by Universities Research Association Inc. under contract with the United States Department of Energy 



SYMMETRY IN PHYSICS' 

CHRISTOPHER T. HILL 
Fermi National Accelerator Laboratory 
P. 0. Box 500, Batavia, Illinois 60510 

ABSTRACT 

We present methods for introducing the concept of symmetry 
into the introductory physics curriculum. 

1 INTRODUCTION 

The concept of symmetry is fundamental to our understanding of the 
physical world. It is where we can discern true or approximate symme- 
tries, such as those involved in the basic forces of nature, that we profess 
any real understanding. Where nature displays little or no apparent sym- 
metries, such as in the spectrum of elementary quarks and leptons, we find 
ourselves most befuddled. Moreover, all thinking in modern theoretical 
physics is aimed at understanding the possible role of deep mathematical 
symmetries in nature. The realization of the importance of symmetry to 
the understanding of the laws of physics is a modern concept, belong- 
ing almost entirely to the twentieth century and beginning largely with 
Einstein and the special theory of relativity. 

Why is the concept of symmetry essentially totally absent in the intro- 
ductory physics course? Symmetry is probably the greatest component of 
what we mean when we speak of the “beauty of physics”, yet the student 
of physics does not begin to see this underlying motif until rather late in 
the usual curriculum. Perhaps it is here that we do ourselves the greatest 
disservice in denying a peak into this structure to the casual physics stu- 
dent. Having delivered the “Symmetry” lecture in the Fermilab Saturday 
Morning Physics program for the past six years I’ve found that as a con- 
ceptual framework it can be introduced to the introductory (high school) 
physics students in a substantive and meaningful way. The student must 
be led to discover the physical manifestations of symmetries after ex- 
ploring the mathematical concept without burdensome abstraction. This 
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2 Symmetry in Physics 

may lay the basis for further study of group theory, having provided a 
concrete realization of the ideas in geometric examples and the ways in 
which nature is constrained by symmetries. During a unit on conservation 
of momentum, energy and angular momentum, the underlying origin of 
these principles as a consequence of the fundamental symmetries of space 
and time can be demonstrated and the content of Emmy N6ether’s fa- 
mous theorem connecting these can be motivated without attempting a 
proof (see Section 4). 

In this brief article I will outline a set of basic mini-units which can be 
injected into the standard curriculum at various points without largely 
disrupting the latter. Pausing to contemplate an elegant symmetry argu- 
ment in the course of analyzing a tedious physics problem can contribute 
much to enliven the subject, even for beginners. And, please view this as 
a small beginning, but by no means a conclusion to this subject; you are 
heartily encouraged to develop it further yourself! 

I : 

2 How Do WE THINK ABOUT SYMMETRY? 

Mathematicians solve many problems in geometry and topology by 
turning them into epuiu&nt algebraic problems. This approach to un- 
derstanding symmetry as a subject unto itself begins approximately with 
the 19th century French mathematician, Galois [I], who in his short, 
tragic life laid the foundation and fundamental applications of what we‘ 
call “group theory”, a mature branch of modern mathematics (the biog- 
raphy in Scientific American of ref.( 1) is highly recommended reading). 

We will not develop group theory here in its general form, but rather 
think concretely about the symmetries of a very simple geometric object... 
. ..the equilateral triangle. This is the simplest nontrivial example and the 
results for any student the first time through this introductory exercise 
are often very surprising. 

Prepare two transparencies as in Fig.(l) and Fig.(Z) each featuring an 
equilateral triangle, both of the same size. The transparency of Fig.(l) 
has the three axes of symmetry labeled &s I, II and III, while the trans- 
parency of Fig.(Z) has the vertices labeled a~ A, B, and C. 

Transparency (1) is laid down on the projector table and the students 
are informed that this is a reference triangle which must be considered 
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I. 

Figure 1: The reference triangle 
I 1 

to be glued in place and has the purpose of serving as a reference grid, 
or a kind of “coordinate system”; once laid in place we will not move it 
again. Transparency (2) on the other hand is an ezperirnental triangle; we 
will be overlaying the reference triangle with the experimental triangle. 
Our problem is to find all possible distinguishable ways in which the 
ezperimental triangle em be lifted up and brought down on top of the 
rejerence triangle. The vertices of the experimental triangle are labeled 
to allow us to identify the distinguishable ways in which this can be done. 

We begin by overlaying the experimental triangle on the reference tri- 
angle with the vertices reading ABC clockwise around the experimental 
triangle. This will be called the initial orientation. Our problem now 
is to discover a way in which we can pick up the experimental triangle 
and bring it back down on top of the reference triangle so that the ver- 
tices read something other than ABC clockwise. Each such operation is 
called a symmetry operation and our problem is to iind all possible 
distinguishable symmetry operations of the equilateral triangle. How do 
we proceed? 

Some student will no doubt suggest rotating the experimental triangle, 
until the vertices now read CAB clockwise from the top. This certainly 
corresponds to a symmetry operation, which is a rotation through 120”. 
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A 

C A 
0 

Figure 2: The experimental triangle 
I I 

We shall designate thii 6rst discovery sa Rotlzs. and it should be written 
down on the blackboard sa such (there will be six such operations and 
this should be written second from the top of a column). 

I I 
Now return to the initial orientation. What else? It is obvious at 

this point that a rotation through 240” is another symmetry operation 
which yields the result BCA. However, it is important to emphasize that 
we should always return to the initial orientation before performing the 
next opeiation (this is a bit like pressing the CLEAR button on a pocket 
calculator before doing the next calculation). Thus we discover a second 
distinguishable symmetry operation which we designate Rot*,,,- 

Q: Why is this a distinguishable rotation? 
Because the vertices now occur in the sequence BCA, we 
see that the triangle has been moved to a new orientation, 
distinguishable from the initial orientation ABC or from the 
Ro&oO orientation of CAB. 

Q: Why do we distinguish between a symmetry operation and 
an orientation of the triangle? 
Here there is an important distinction. The symmetry opera- 
tion takes the triangle from any given initial orientation and 
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maps it into a new orientation; the position of vertices, A,B, 
and C, defines a particular, absolute position and orientation 
of the triangle in space. We are really interested here only in 
the symmetry operations, but not the absolute positions and 
orientations in space. That is, we are really only interested 
in the relative positions and orientations that the triangle can 
be brought to by a symmetry operation starting with any ar- 
bitrary initial position and orientation. We only introduce 
the labeling of vertices to keep track of them, starting always 
in the initial orientation ABC, with the triangle positioned 
on the table (we could equally well have labeled sides of the 
triangle). The symmetry operation can be performed on any 
equilateral triangle, of any size, drawn with any color ink, in 
any initial position and orientation. It captures the essence of 
symmetry, but contains no additional information about any 
particular triangle or its absolute position and orientation in 
space. ,I /, II 

Are there other symmetry operations to consider? A student may 
suggest a rotation by -120”. But we now see that this takes the triangle 
to BCA (from the initial orientation, of course) and therefore this is not 
a new operation, i.e. it is not distinguishable. We may thus write the 
equation: RoLlzoO = Rot24s0 . Again, we do not care about the path 
that takes us from one orientation to another; we only care about the 
new orientation relative to the initial orientation. That’s what defines a 
symmetry operation. Thus Rot_lzo. and Rotz4s0 are the same. 

At this point a student may suggest a rotation through 360”. Is this 
a symmetry operation? We see that it maps the triangle from the initial 
orientation ABC back to the initial orientation ABC. Consequently, it is 
a symmetry operation, but a very special one. For one, it is equivalent 
to doing nothing at all. As such we shall refer to it as the “do nothing 
operation”, or the identity operation. We shall denote it at the top of 
our blackboard lit by the boldface 1. Secondly, note that the identity 
element is a symmetry operation of any object; even an amoeba has the 
symmetry of the identity symmetry. Thirdly, we note that a rotation 
through 360” is equivalent to a rotation through any integer multiple 
of 360”, e.g. 720”, -360”, etc. All are equivalent to the “do nothing” 
operation, 1. 
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Q: Then isn’t our RotiQoO equivalent to RotlroO+ssoPx~ where 
N is an integer? 
Yes. 
What is the analogous statement for Rotr,cO? 

We now have three symmetry operations; are there more? In fact, 
the student will generally suggest performing a reflection about one of 
the three axes of the reference triangle. We begin with the initial orien- 
tation and consider “skewering” the experimental triangle (as if we had 
a barbecue skewer) along one of the axes of symmetry indicated on our 
reference triangle. For example, skewering along axis I, we then pick up 
the triangle and flip it and we arrive at the new orientation, ACB. We 
denote this symmetry operation as a reflection about a& I or aa RefI. 
Similarly, we return to the initial orientation and consider the other two 
symmetry operations, (a) the reflection about axis II, or Refr, which 
yields the vertex position BAC and (b) the reflection about axis III, or 
Refrr, which yields the vertex position CBA. Thus we now have a list 
on the blackboard of six of the symmetry operations which has the form: 

Table I. The six symmetry operations of the equilateral triangle. 

Notation 1 Operation Vertices 

Are there any other symmetry operations? At this point many students 
recognize that we have discovered essentially the six permutations of three 
objects, i.e. the six permutations of the three vertices of the triangle. 
That raises an interesting question: 

Q: Are the symmetries of all such objects, such as squares, 
pentagons hezagons, cubes, etc. given by the permutations of 

their vertices? 
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In fact the answer is no. It doesn’t work that way for the 
square as we can easily see. Suppose we have a square with 
vertices labeled ABCD. A true symmetry operation of the 
square is a rotation through 90’ and gives DABC, which is also 
a permutation of the vertices. However, is there a symmetry 
operation which can give the vertex ordering BACD, which is 
certainly a valid permutation of ABCD? (Think in terms of an 
experimental square on a transparency; what would we have 
to do to the transparency to get BACD starting from ABCD?) 
Clearly, this is not a symmetry operation of the entire square 
because we would have to twist the experimental square to get 
the vertices into this position, but then the sides would not 
overlay properly! Thus, while all symmetry operations of geo- 
metric objects are indeed permutations, not all permutations 
are symmetry operations of geometric objects. We have ac- 
tually discovered our first example of a subgroup; the square 
is a subgroup of the group of permutations of four objects. 
The equilateral triangle is simpler and it does have only six 
symmetry operations, the ones we’ve listed above, which are 
equivalent (isomorphic) to the permutations of three objects. 

Thus far our exercise has been almost trivial, but now we make the 
great observation of Galois and his colleagues. We now ask, can we ob- 
tain additional symmetry operations by combining together two of the 
operations previously obtained? That is, let us take two of our‘six op- 
erations, say Rotrrs. and Ref,l, and first perform one of them on the 
experimental triangle (try Rotrrs.) and without returning to the initial 
orientation perform the other operation (RefII). We see that if we begin 
in the initial orientation that Rot rrsO leads to CAB and then following 
with Refr, we obtain the orientation ACB. But ACB is not a new orien- 
tation of the triangle, and it corresponds to Refl ss seen by our table. We 
have therefore discovered an interesting result: first performing Rotlzoa 
and following it by Refrr yields the result Refl. 

Let us write an equation for this result: 

Rotlzoo @ Refrr = RefI. (2.1) 

Here we have introduced a symbol, @, which represents the action of 
combining the symmetry operations in the order indicated (without re- 
turning to the initial orientation in between). It is easily seen that the 
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@ combination of any pair of our symmetry operations (which we also 
refer to as “elements”) produces another of the elements. We say that 
our set of elements is closed under the operation 8. Thus, in a sense‘the 
combining of two symmetry operations is something like multiplication 
of numbers. In this sense the “do nothing operation” is the identity: 

l@X=X@l=x. (2.2) 

Q: Why do we call this Vmultiplication” rather than “addi- 
tion”? 
The answer is really one of convention. Multiplication and ad- 
dition have very similar mathematical properties; the identity 
element in addition is 0, while in multiplication it is 1. The 
inverse of 4 under addition is -4, while under multiplication 
it is i. Hence, the positive and negative integers close under 
addition while the rationals close under multiplication. Note 
however that there is an important difference between addi- 
tion and multiplication: 0 has no multiplicative inverse, i.e. 
infinity makes no sense mathematically. Denoting the com- 
bination of symmetry operation by “multiplication” is also a 
consequence of the fact that matrices can represent the group 
elements and matrix multiplication can represent the ~3 oper- 
ation as we shall see subsequently. 

Thus we have made a very important observation: the symmetry oper- 
ations form an algebraic system with on operation consisting of perform- 
ing successive operations. This algebraic system is called a group. The 
symmetry operations are the analogues of the rational numbers under this 
group multiplication. We refer to the symmetry operations as group el- 
ements or simply as elements. We present the complete multiplication 
table of the symmetry group of the equilateral triangle, designated as Ss, 
in Table(I1). The entries in this table should be verified by performing 
several of the csses with the experimental triangle and reference triangle 
transparencies. Table(I1) is to be read like a highway mileage map; if we 
choose to perform the product X @ Y we first find the row labeled on the 
left by X, then the column labeled on the top by Y and we look up the 
corresponding entry in that row and column for the result. 
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Table II. Ss Group multiplication table 

1 Rohzo. Rotzroo 1 RefI [ Refrl Ref III 

There are several important properties of this group multiplication 
table that are shared by all groups: 

l A group is a set of elements and a,,composition law, 8, such that 
the product of any two elements yields another element in the set. 

l Every group has an identity element satisfying eq.(2.2). 
I 

l Each element of the group has a unique inverse element. That is, 
given an element X there exists one and only one element, Y (which 
may even be X itself), such that X ~3 Y = Y @ X = 1. 

l Group multiplication is associative. That is, given X, Y and 2 we 
have X @ (Y @ Z) = (X @I Y) @ Z. In words, first perform Y and 
follow by 2 and remember the result (call it W). Now return to 
the initial orientation and first do X and follow by W. This result 
will be the same as having first done X followed by Y then followed 
by 2. This is the meaning of associativity and you should carefully 
think it through to make sure you understand it. 

l Each element of the group occurs once and only once in each row 
and each column of the multiplication table. This can actually 
be proved as a theorem from the preceding statements. This is a 
powerful constraint on the mathematical structure of the group; 
essentially the group multiplication table forms a kind of “magic 
square”. 
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. Group multiplication is not necessarily commutative*. That 
is, X @ Y need not equal Y @ X!!! 

This last result, namely that group multiplication is not commutative, 
is really quite remarkable. Here we have discovered a simple system 
of six elements with a multiplication law and the system is not even 
commutative. For example, (this should definitely be shown explicitly with 
the triangles) consider first performing Rot.240~ and following by Reflr, 
that is, calculate Rotr400 @ RefI,. You should obtain the result RefrII. 
On the other hand, consider first performing RefIl followed by Rotrleo, 
i.e. compute Ref,, 8 RotzroO. The result is RefI. Summarizing: 

Rotrdc* @ RefIl = Refill 

RefI, @ Rot240O = Refr 

Thus, although ordinary multiplication is commutative, e.g. 3 . 4 = 
4. 3, group multiplication need not be. When a group has commutative 
multiplication it is said to be an abelian group, after the mathemati- 
cian Abel. The general group, such as the equilateral triangle group, is 
noncommutative, or nonabelian. 

We finish this discussion with an important example as to how group 
mathematics underlies the structure of our physical world. One may 
wonder how noncommutative mathematics can have anything at all to 
do with nature, or physics. A simple demonstration will show this. 

Take a textbook and hold it in front of you with the binding 
down as though you were going to open it up on a table. Now 
extend your right arm parallel to your chest and parallel to 
the floor (like a right turn signal) and let this be the positive 
x-axis. Now extend your arm straight out in front of you; let 
this define the positive y-axis. We wish to rotate the text- 
book by 90” about the positive x-axis and follow this by a 

ZThis d’ wussion should be eonaidered for introduction into a mathematics class (~9 a 
unit for this reason. The concept of the commutative property of ordinary addition 
or multiplication in almost VMUOUS without showing a counterexample, namely a 
system in which it doesn’t hold! Our equilateral triangle symmetry group affords 
such a simple example. Unfortunately, there are no simple examples of nonassociative 
systems, even though they do exist. 
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rotation through 90” about the y-axis. The rotations should 
always be performed in the sense of a right hand screwdriver. 
Perform the two successive rotations and note the book’s po- 
sition. Now return the book to the initial orientation and 
perform first the rotation about the y-axis followed by a ro- 
tation about the x-axis. You will find that the book ends up 
in two different positions. The symmetry group consisting of 
rotations through 90” is a noncommutative group. The con- 
tinuous group consisting of all rotations of objects in three 
dimensions (the full symmetry of a sphere) is thus noncom- 
mutative. It is known as O(3) and it governs the physics of 
angular momentum and spin. 

The subject of group theory is an entire branch of mathematics in 
which many people have specialized and undertake ongoing research. The 
continuous groups, possessing an infinite number of operations that vary 
continuously with “angle” parameters, like the rotations of a sphere about 
a given axis through any angle, were first completely classified early in 
the 20th century by Cartan. Remarkably, only very recently have all 
possible discrete symmetry groups been classified. This job was made 
difficult by the existence of certain “sporadic” groups, such as the “mon- 
ster group” with FS 8 x 1O53 elements. The classification of the discrete 
groups constitutes one of the longest and least comprehensible theorems 
in mathematics (2). 

The application of group theory to physics is a rich and fundamen- 
tally important subject, significantly different than pure mathematical 
research into groups and their properties. While mathematicians may 
struggle to classify the discrete groups, such as the monster, nature em- 
bodies only a small subset of all possible mathematical symmetry groups. 
It is remarkable, however, that ss we probe deeper into the shortest dis- 
tances and most elemental properties of matter we seem to discover evi- 
dence of ever more sophisticated symmetry groups at work. Nature seems 
to read books on group theory! 

Exercises and food for thought: 

1. Construct the symmetry group of the square and its associated 
multiplication table. Verify the properties discussed above for the 
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general group. 

2. Construct the permutation group of four objects and its associated 
multiplication table. Is it isomorphic to the square’s group? 

3. A subgroup of a group is a subset of elements which themselves 
form a group. Clearly, each subgroup must contain the identity. 
Can you identify some subgroups of the equilateral triangle group? 
What is the largest subgroup of the equilateral triangle symmetry 
group (not counting the entire group itself [each set is a subset of 
itself]; technically we want the largest proper subgroup). 

4. If the square in the preceding problem is squashed into a rectangle 
identify the surviving subgroup (see the preceding problem) which 
describes the remaining symmetry. (As a preliminary exercise con- 
sider an isosceles triangle in which vertex A is lifted along axis I in 
Fig.(l); what is the resulting symmetry group? Is it a subgroup?) 

5. Ifan infinite floor is tiled with equilateral triangles we have a lattice. 
Is the symmetry group of the equilateral triangle also a symmetry 
group of the lattice? (Yes, but it is only a subgroup; It is called 
the “point group” of the lattice). Is the full symmetry group of the 
lattice equivalent to the group of a single triangle? (No. It includes 
in addition the set of translations along the axes which bring the 
entire lattice down on top of itself). Does a rotation commute with 
a translation? This problem illustrates how groups enter solid state 
physics in which they are of paramount importance. 

3 PHYSICAL SITUATIONS INVOLVING SYMMETRY 

In the previous lecture we introduced the formal notion of the sym- 
metry group. Specifically what has it to do with physics? We present 
here a number of problems which illustrate the power of symmetry ar- 
guments in the solution of physics problems. Our last examples, (5) and 
(6), that of the modes of oscillation of a system of three coupled masses, 

goes the farthest in illustrating the power of group theory (and group 
representation theory). 
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Figure 3: Symmetric arrangement of four masses, all at rest 
I : 

Example 1. 

In Fig.(S) we have a symmetric arrangement of three masses following 
the equilateral triangle with a single mass situated at the center. What 
is the force of gravity exerted upon the center mass due the other three? 
Of course, we must be careful in stipulating that the system really is 
fully symmetric. Thus, each particle is at rest and has no internal degree 
of freedom (such as angular momentum, or quadrupole moment‘of mass) 
which violates the symmetry; or at least we seek an approximate solution 
in the limit in which such complications can be ignored. 

Therefore, it is obvious that the force, by symmetry, vanishes for the 
particle in the center. This involves the symmetry considerations of the 
preceding section as well. Suppose that by adding up the individual 
force vectors due to the three masses at the vertices we had obtained 
the nonvanishing result shown in Fig.(4). Now this answer is clearly 
wrong, but why is it wrong from the point of view of the symmetry 
group? Consider performing a typical group operation on this result, 
e.g., perform the operation Refl. This maps the system into itself, but 
it maps the answer into a new one shown in Fig.(5). The same system 
cannot produce two different results, so we have shown that the result is 
wrong. Actually, consideration of Ref, alone does not eliminate a result 
lying on the axis I, however we may then consider, e.g., Rot1200 to dispose 
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0 M 

Figure 4: Hypothetical result for the force exerted on center msss 
I 

of that case. Clearly, the only result which is invariant under any of the 
group operations is zero. 

This trivial example illustrates a very important aspect of nature: If 
a physical configuration possesses a given symmetry then the dynamics 
of the system will possess the symmetrys. Thus, our result in this case 
does not upon the kind of force law involved so long as the symmetry 
constraint is in effect. The central particle could be a pion surrounded 
by (spinless) nuclei interacting through the strong nuclear force and the 
conclusion would be the same: the force must vanish by symmetry! 

Example 2. 

In Figure(B) we have yet another configuration which this time does 
not possess the full symmetry of the equilateral triangle. Now what is 

eThere ie e caveat here of great importance: the system must be ito6lc in the symmet- 
ric configuration. Many systems, such M ferromagnets, though they are described 
by rotationally invariant equations of motion, are unstable in rotationally invariant 
states. These systems undergo ‘spontaneous symmetry breaking’ at low tempers- 
tures. The ferromagnet develops nonzero magnetieation below the Curie temperature. 
The problem ahown above actually exhibits this phenomenon. If the small meee at 
the origin in the above problem WM aligbtly diplaced awsy from the center it would 
then experience e noneero force pulliag it farther ewey from the center ead the small 
symmetry breaking tluctuation is amplified. Replecing all the maeeee by positive 
chargea eliminatea the instability. 
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a r 

Figure 5: Action of Refr on answer obtained in Fig.4 
I 

the force exerted upon the central mass? 

Of course, there is a residual symmetry here. This system is described 
by the subgroup of the full equilateral triangle symmetry group consisting 
of the elements 1 and Refl. Thus, the resulting force vector must lie 
along the axis I. Symmetry does not tell us what the sign of the force is. 
For gravity the force is away from the center while for electromagnetism 
it depends in an obvious way upon the choice of charges. Thii typifies 
the situation scientists often face in understanding a new phenomenon. 
A symmetry may be present which goes along way toward controlling the 
physics, while some unknown underlying dynamics may be present which 
determines the quantitative outcome. 

In the present case it is instructive to consider the small displacement 
from the center, a, of the mass p. The general inverse square law gives: 

F= Q P 
(f -a)’ - (r + aces e), (3-I) 

where a and p are given by the precise form of the force law (i.e. gravity 
versus electromagnetism, etc.). Here B is 60° as is seen by the the geom- 
etry of the situation. Symmetry tells us that F = 0 when a = 0, hence 
that cc = p. For F < ,l we may consider the first terms in the series 
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Figure 6: Asymmetric arrangement of masses, all at rest 
, / 

expansion of eq.(3.1) and thus: 

using cos0 = i. For gravity Q = GMp and the force is up, away from 
the center and the configuration is unstable. If the vertices correspond 
to charges, Q, and center to charge -q, then Q = kgQ and the force is 
toward the center and the central mass is in a stable potential. 

Example 3. 

One of the most conspicuous atomic transitions is the 2P --t 1S 
“dipole transition” in, e.g. atomic Hydrogen. The 1S orbital is the 
groundstate quantum mechanical motion of an electron in the Hydrogen 
atom and is the shape of a perfectly rotationally symmetric ‘cloud” if 
the atom is in free space. The 2P levels are not rotationally symmetric 
and “point in a direction” like a vector, and form, therefore, a ‘triply 
degenerate” state, i.e. the electron can at any instant be in one of three 
independent P-orbitals, ZP., 2P,, or 2P,, corresponding to the three in- 
dependent directions in space. The three 2P states are degenerate, i.e. 
have the same energy, because of rotational symmetry. If the electron is 
in the 2P, state we can just rotate the atom at no cost in energy (or just 
rotate our reference frame) and thus put the electron into a 2P, or 2P. 
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state. There are also higher orbitals such as the D, F etc. with more 
orientational information than the S or P (these are like tensors). 

If the atom is placed in a strong magnetic field we have broken the ro- 
tational symmetry. Suppose the magnetic field points in the s-direction. 
Then we still have rotational symmetry in the perpendicular x-y plane. 
Therefore, the 2P, and 2P, orbitals will remain degenerate, but the 2P, 
orbital will develop a slightly different energy. This energy splitting is 
proportional to the magnetic field strength and the observed transition 
photons from 2P, + 1S and 2P, or 2P, + 1S will have slightly different 
energies. This is known as the Zeeman effect and is one of the principal 
methods for determining the presence and strength of magnetic fields in 
the sun and other astronomical objects. 

Incidently, putting atoms into crystal lattices also breaks up the de- 
generacy of atomic levels due to the interatomic forces and their symme- 
tries which follow the symmetries of the crystal lattice. Can you think of 
a way to get the 2P,, 2P, and 2P, to each have different energies? If the 
hydrogen atom could be placed in a perfect cubic crystal would the 2P 
levels be degenerate? (Ana: yea) What about a non-cubic lattice? 

Example 4. 

Figure(7) shows yet another configuration of large masses, M, ar- 
ranged on the vertices of a symmetric hexagon, however the topmost 
vertex has a mass m # M. Given this each vertex is a distance a from 
the center, find the force experienced by the center mass ~1 (this should 
be done in less than one minute). 

It is clear that the resulting force must be directed along the vertical 
axis of symmetry and thus can depend only upon the uppermost and 
lowermost masses. Since the force vanishes when m = M, it must depend 
only upon the difference m - M (gravity depends only linearly upon the 
“pullers”). Also, when m >> M the force must be in the uj~ direction. 
Hence, without any computation at all, we arrive at the answer: 

F = Gp(:2- M) ,@ 

These are only a small handful of simple, illustrative problems. I urge 
you to .develop more of them (particularly clever ones). The following 
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Figure 7: Hexagonal arrangement of masses; the topmost mass is differ- 
ent. What is the force on p? 

2 I 

discussion amplifies the theory of symmetry groups to get at a very pow- 
erful relationship between physics and symmetry through the properties 
of group repreacntations. 

Example 6. 

We consider the question, “Can we End any standard mathemati- 
cal objects which close under multiplication and satisfy the same rules 
of combination as any given symmetry group?” Such a set of objects 
forms what is known ss a representation of the group. The problem of 
classifying all of the representations of symmetry groups is an extremely 
important and very rich subject and forms what is known as represen- 
tation theory. It also has a great many physical applications. 

For any group there always exists a trivial representation which 
consists of letting each element be represented by the number 1. Thus 
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we write: 
1 + 1 
Ro&,,o + 1 
Ro&ia + 1 
Refr + 1 
RefIl + 1 
RefIrr + 1 

(3.4) 

This forms a representation in the sense that the product of any two ele- 
ments as given by Table(I1) produces a result consistent with the product 
of any of the representative elements. Thus Rot2400 @ RefI, = Reflrr 
is consistent with 1 x 1 = 1; but of course this is trivially the case. The 
trivial representation thus contains no information about the group. 

Are there any other representations using only numbers? It should be 
fairly clear to you upon thought that the absolute magnitude of each num- 
ber representing a symmetry element must be unity (for example, since 
Refl @ RefI = 1 the number representin RefI, call it a, must satisfy 
a2 = 1; also the rotations map unit vectors into unit vectors. Indeed, if 
we consider only the three element subgroup consisting of 1, Rotlzo. and 
RotzroO, we could always write down a complez representation: 

1 + 1 
RotIzo. -+ exp (2ni/3) (3.51 
Rob400 -+ exp (4ri/3) 

however, when we include the reflections this ceases to be a possible 
representation of the full equilateral triangle group). 

There is a representation of the full equilateral triangle group which 
is nontrivial, yet involves only 1 and -1. It is: 

1 -+l 
Rohzo. -+ I 
Rohoo -+ 1 
Refr + -1 
Refrr + -1 
Refjjj -+ -1 

(3.6) 

This representaion recognizes the difference between those operations 
which can be done without lifting the experimental triangle (the rota- 
tions) and those that require lifting and flipping (reflections). Another 
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way of saying it is that rotations are direct operations which we may 
perform upon the system while reflections require a mirror or a parity 
transformation. We shall call this the parity representation. We see 
that the correspondence with the multiplication table(I) may be checked 
by considering several examples: 

Rotlzo. CZI RotzroO = 1 -+ l*l=l 
RefI @I Rot2400 = Ref,ll -+ (-1) . 1 = (-1) (3.7) 
Refer @I Refrrl = RotlzoO + (-1) . (-1) = 1. 

Both the trivial representation and the parity representation are exam- 
ples of unfaithful representations because the same representative (1 
or -1) corresponds to two or more elements (e.g. -1 corresponds to 
Ref,, RefI, and Refrrr). Are there any faithful representations of the 
equilateral triangle symmetry group? 

In fact, there is one more representation that is faithful, but it cannot 
be given in terms of numbers. It ret 
cation operation is now matrix mull 
may be written as: 

qui res 2 x 2 matirices and the multipli- 
tip: lication. The matrix representation 

1 + 

Rotlzo.3 -+ 

RotzdoO i 

Refl + 

RefIl -+ 

1 0 

0 1 I 
-+ -lg 

q -i 
I 

-; d3 

-g :+ 
I 

-1 0 0 1 I 
+ J$ 

q -+ 
1 

(3.3) 
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Again, we see that the representation gives results consistent with 
Table(I1) for a few sample cases: 

Rotlz,,o @ Rotzd,p = 1 

-( 2 ---)*( 1; :)=(: :) 
Ref 18 Rot 2400 = Refill 

Refrr 8 Refm = RO~~~~. 

(3.9) 

-(; y)*( !! ?)=( 2 -7) 

The reader is invited to check other cases. Of course, this kind of represen- 
tation is possible because matrix multiplication is itself noncommutative. 
In fact, the set of all matrices of a given order, e.g. 2 x 2, with nonvo- 
nishing determinant form a group with respect to matrix multiplication 
(why must we stipulate nonvanishing determinant?). 

Are there any higher matrix representations? Of course, we can al- 
ways combine the two numerical representations (these are 1 x 1 matrices) 
and the 2 x 2 case to form higher dimensional matrix representations. For 
example, consider the set of 3 x 3 matices consisting of a 1 in the upper 
left-hand corner and a 2 x 2 matrix from our set of matrix representa- 
tions in the lower right-hand corner, with zeros everywhere else. This is a 
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representation, but it contains no new information not already contained 
in the cases examined above. It is known aa a reducible representation 
because it is a set of matrices that are block diagonal, and each block 
contains one of the three basic representation described above. The three 
representations we’ve discussed above are the only irreducible represen- 
tations of the equilateral triangle symmetry group. In general it is not 
trivial to decide if a given representation is reducible. This is because 
we may take a group of block diagonal matrices and multiply on the left 
by some matrix, S, and on the right by S-’ and we still preserve the 
group multiplication table, but the resulting matrices no longer appear 
to be block diagonal. Nonetheless, such a representation is equivalent to 
the block diagonal reducible one and is itself reducible. So the general 
problem is to determine whether a given representation is equivalent to 
a block diagonal one by right multiplication by some S and left multipli- 
cation by S’. If no such S exists, then the representation is irreducible 
and therefore interesting. This problem is the solved and constitutes the 
central subject of group representation theory. “We refer the reader to 
any good book on group theory for a discussion of representation theory. 

Example 6. 

We consider now a physical system as shown in Figure(E) which con- 
sists of three equal masses attached together by springs. This may be 
viewed as a kind of molecule and we will assume that it can move only in 
the 2-dimensional plane for simplicity (such a system could be fabricated 
out of air-pucks and springs for use on an air table aa a demonstration) . . 
The system possesses in its equilibrium rest state the symmetry of the 
equilateral triangle; it Will be governed by the symmetry group of the 
triangle in a very interesting way. The system can undergo several kinds 
of motion, consisting of uniform center-of-mass translations, rotations 
and internal oscillations. Indeed, this is a property shared by all molecu- 
lar systems and the heat capacity of a gas essentially counts the various 
states of motion of the systems comprising the gas. First, we may count 
the number of independent motions of the system, e.g. how many num- 
bers must be given to specify the exact state of the system at any time? 
These are called degrees of freedom of the system. Since we have 3 
muses and each mass requires 2 coordinates (an x- and a y- coordinate) 
we thus have 2 x 3 = 6 degrees of freedom. The tying together of the 
masses by springs does not change the counting because the springs are 
free to stretch and given the 6 coordinates we can calculate the length of 
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Figure 8: “Molecule” consisting of masses and springs. 
‘I II 1: 

each spring (if, on the other hand, the masses were attached together by 
3 rigid rods which are not free to stretch we would have 6 - 3 = 3 degrees 
of freedom). 

Describing the motion by giving the 6 coordinates does not tell us 
much about the system’s motion as a whole. Therefore, we wish to de- 
scribe the system in terms of basic motions that we can separate.qualit* 
tively. In fact, this separation also reduces the mathematical complexity 
of analyzing the motion of the system. These are called the normal 
mode8 of the system’s motion. 

First, suppose the system is initially at rest in its equilibrium position. 
Clearly, two modes of motion are just given by uniform translation of the 
center of mass in the x- or y- directions. Thus, we may dispose of 2 
degrees of freedom (d.o.f.) and analyze the remaining 4 d.o.f. by holding 
the center of mass of the system fixed in space. 

With the center of mass fixed we may consider a uniform oscillation of 
the system as a whole as shown in Fig.(Q). This is known as a breather 
mode since the system simply expands and contracts but remains always 
in the fully symmetrical shape. Thus, if we act upon the breather mode 
with one of our symmetry operations, e.g. simply perform RotlzoO or 
Refer on the system at some arbitrary instant of time, we see that we 
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Figure 9: The breather mode 
I I 

remain in exactly the same state of motion. Therefore, the breather mode 
corresponds to the trivial representation of the group. It has a characteris- 
tic frequency, we given by the mass, M, and the spring constant, K. Next, 
we may consider a uniform rotation about the fixed center of msas of 
the system, Fig.(lO). Let us consider clockwise rotation with angular fre- 
quency w,. If we act at some instant upon the system with the symmetry 
group elements, 1, Rot1200 and Rot rlsO, we find that the motion will re 
main the same. On the other hand, acting with the elements Refr, Refrl 
and Ref 111 we see that the motion becomes counterclockwise, i.e. these 
operations map the frequency into -w,. Theraiore, uniform rotation cor- 
responds to the parity representation of the group. Therefore, we are left 
with 2 remaining d.o.f. Consider the motion shown in Fig.(lI). Here one 
of the vertices moves out along an axis of symmetry while the other ver- 
tices are attracted toward the axis. These three motions, corresponding 
to the three vertices, are not independent, i.e. if we add together all three 
motions with equal strength we obtain no motion at all (o + p + 7 = 0). 
However, if we act upon any of the motions we obtain one of the others. 
For example, Rotire. = fl, or Ref,r(o) = -y. How do we rewrite these 
three modes in terms of two 80 that they close under the action of the 
symmetry elements? An snswer is the following: 

mode l=a-j? mode 2 = a + p - 27 (3.10) 
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Figure 10: Uniform rotation 

Figure 11: The doublet modes 
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Now under the action of any symmetry element these two modes go into 
linear combinations of themselves. Thus, these two modes correspond 
to the doublet representation of the symmetry group. Because they are 
related to each other by symmetry elements, they must have the same 
frequency of oscillation. Of course, this frequency will not be the same as 
that of the breather mode. The normal modes forming a representation 
of the group are said to be degenerate in their oscillation frequency. 

Example 7. 

In the mid 1960’s the strongly interacting particles could be placed 
into multiplets of a continuous symmetry group,SU(3) [3]. One of the 
representations of SU(3) has eight components, and is known as an octet 
(the SU(3) symmetry elements can be represented as 8 x 8 matrices in an 
irreducible way; the eight members of the octet mix amongst themselves 
under an SU(3) transformation). The eight spin-0 mesons fit into one 
multiplet, the eight spin-i baryons into another, and so on (see Fig.(l2)). 
There is also a 10 component representation into which the spin-g bary- 
onic resonances fit (in fact, one, the Cl-, was missing at the time SU(3) 
was discovered and it was correctly predicted by the theory). The par- 
ticles in the multiplets were not degenerate indicating that the SU(3) 
symmetry was not exact, but the pattern wa4 clearly established. 

The puzzle wits that the smallest representation of SU(3), namely 
a triplet consisting of three spin-i particles with charges (g, 1 ‘) -5, -3 
were not seen directly (in these units the electron charge is -1). These 
particles are known respectively aa the ‘up” quark, the “down” quark, 
and the “strange quark”. 

Today, however, we have compelling evidence that the quarks do exist 
but are permanently confined within the particles we see in the labora- 
tory. All of the mesons are composed of quark and anti-quark, while each 
baryon contains three quarks. SU(3) symmetry is not exact because the 
strange quark mass is much larger than the up or down quark masses 
(this is analogous to breaking the equilateral triangle symmetry by mak- 
ing one of the vertex masses much different than the others; the doublet 
modes would cease to be degenerate). Incidently, there is another totally 
distinct SU(3) symmetry associated with the force holding the quarks 
together inside of the mesons and baryons. This latter SU(3) is called 
the “color symmetry” and it is an exact symmetry (it is also a gauge 
group, which is a subject beyond the level of our present discussion). 
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Figure 12: SU(3) baryon octet and resonance decuplet 
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4 SYMMETRIES OF THE LAWS OF PHYSICS AND N~ETHER’S 
THEOREM 

What are the symmetries of the basic laws of physics? What do 
mean by a symmetry in a law of physics? Just as in the case of the 
equilateral triangle a symmetry operation is an action we perform upon 
a geometric configuration such that it remains unchanged, we mean now 
an operation we can perform upon an experiment such that the outcome 
of the experiment is unchanged. However, the operation must hold for 
any conceiveable ezperiment if it is to qualify as a symmetry of the laws 
of physics. 

Let us imagine an effort to map out the symmetries of the laws of 
physics. We suppose that we have a vast region of perfectly empty space 
and an enormous amount of time. For example, we go into a void in 
the Universe that measures ti lo6 parsecs on each side with a laboratory 
(fig.(l3)). The laboratory moves through the void, carrying out various 
experiments. For example, the laboratory measures the quantities: 

Physical Quantities: 

1. The masses of the electron, proton, mesons, W-bosom, etc. 

2. The electric charges of these particles. 

3. The speed of light. 

4. Planck’s constant, 

5. The lifetimes of various particles and nuclear levels. 

6. Newton’s universal constant of gravitation. 

These quantities are measured to enormous precision and the values are 
plotted against various configurations of the laboratory: 

Configurations: 

1. The position in space of the laboratory, 



Symmetry in Physics 
29 

Figure 13: Laboratory for measurement of symmetries in physics. 
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2. The orientation in space of the laboratory, 

3. The time of the measurement, 

4. The velocity of the laboratory. 

After many billions of years the results of the study are completed. They 
may be summarized simply: The physical quantities measured by the lab- 
oratory have no dependence upon the configuration of the laboratory. In 
other words, changing the position, orientation, time, or velocity of the 
laboratory does not influence the outcome of experiments conducted in 
the laboratory! These are symmetries of the laws of physics. 

In fact, such an experiment can be performed. For example, here at 
Fermilab we might try to determine if some basic physical quantity, such 
&4 the lifetime of the charged pi-meson, depends upon the orientation of 
the lab. One simply performs the experiment at different times of the 
day and looks for correlations between time of day and measured lifetime; 
the rotation of the earth takes care of the reorieniaiion of the laboratory 
(of course, we must be careful about systematic errors in such an ex- 
periment; maybe the power company switches to a different generator in 
the evening which somehow contaminates our pion beam and gives us 
a fake signal. What are other potential systematic errors and how do 
you avoid them in the design of an experiment?). Such an experiment 
is remniscent of the famous Michelson-Morley experiment which failed 
to show any dependence of the speed of light upon the absolute state of 
motion of the earthbound laboratory through an “ether-filled” space. As 
the consequence of symmetry is simplicity, this experiment, once properly 
interpreted by the special theory of relativity, washed away the concept 
of the ether from physics. 

There are other compelling indications from astrophysics that our 
Universe is the same everywhere and for all time. The physical pro- 
cesses occuring in distant stars and more distant galaxies produce the 
same spectral lines as in laboratory measurements on earth. Such mea- 
surements reach back 10 billion years to the early Universe where even 
Quasi-stellar objects reveal spectral lines of Hydrogen equivalent to those 
we see today’. Also, the measurements are independent of direction is 

‘Of course, these lines are redshifted due to the general recession of these objects, but 
the redshift ia a universal multiplicative effect and the relative frequency ratios of 
lines are not affected 
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space. In fact, it is hard to imagine such a homogeneous and isotropic 
Universe if the laws of physics themselves are not independent of space, 
time, direction and state of motion. 

But can we be absolutely sure that these symmetries are exact and 
that lurking well below the sensitivity of our experiments there are not 
small violations of translational invariance or perhaps the fundamental 
constants change very slowly as the Universe expands? The answer is no. 
We may prefer the esthetic simplicity of the belief in absolute symmetry, 
but we can be no more sure than our best experiments can determine. 
Yet these space-time symmetries are so nearly exact that we can proceed 
to understand nature by insisting that they are truly exact. The reult is 
a completely self-consistent picture of physical laws. 

Changing the position, orientation, time, or velocity of the laboratory 
does not influence the outcome of experiments conducted in the labora- 
tory! In fact, these symmetries form the Poincare’ Group of space-time 
symmetries of the laws of nature - the b&c’space-time symmetry group 
of the laws of physics. They hold over cosmological as well ss microscopic 
and subnuclear scales. What are the physical consequences of these sym- 
metries? This connection is given by one of the most important theorems 
in theoretical physics, known as NZjether’s Theorem [4]: 

For every continuous symmetry of the laws of physics there 
exists a corresponding conservation law. 

Since the translational symmetry operations can act in any one of 
three directions in space we find that there is a conserved quantity known 
as momentum which forms a three component vector. Since temporal 
symmetry operations act in one direction of time we find that there exists 
a conserved quantity known as energy which forms a scalar in Newtonian 
physics. Relativity unites space and time and in so doing melds energy 
and momentum together into one quantity called a 4-vector. 

Rotational symmetry operations can be performed in any of three 
independent directions and thus there exists a vector quantity known as 
angular momentum. In relativity the rotations combine together with 
the three independent Lorents transformations and angular momentum 
becomes associated with a six component tensor. 

Thus Nciether’s theorem gives us the remarkable connection between 
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symmetry and dynamical, physical conserved quantities: 

momentum H space translations 
energy - time translations 
angular momentum +--+ rotations 

(4.1) 

Furthermore, even electric charge, baryon number, quark color and 
other conserved quantities are associated with symmetries in a deeper 
and more abstract manner. 

As the arts and music have moved in this century farther away from 
symmetry, indeed adopting antisymmetry ss a structural element, it is 
remarkable that symmetry has been increasingly understood by physicists 
ss fundamental to the formulation of the laws of physics. How many times 
have we glimpsed an equilateral triangle’s simplicity yet missed it’s inner 
complexity and logical beauty? So too it is with nature. Perhaps her 
deepest secrets lie hidden before our very eyes! 

/ : 
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